1 Compound Interest

$$S = P(1 + i/m)^{mn} \tag{1}$$

where:

06-421

n: compounding periods (years)

m: number of times the annual interest rate, i, is compounded per year

P: present value

S: lump sum or future worth

2 Annuity

End-Of-Year (EOY) payments:

$$X = P\left[\frac{i/m}{1 - (1 + i/m)^{-mn}}\right] \tag{2}$$

Beginning-Of-Year (BOY) payments:

$$X = P\left[\frac{i/m}{(1+i/m) - (1+i/m)^{-mn}}\right]$$
 (3)

where:

X: payment/expense on a regular basis, also denoted R

3 Perpetuity ("Infinite" Time Period)

$$NPV = C_0 + \frac{CF}{i} + \frac{C}{(1+i)^z - 1} \tag{4}$$

where:

NPV: Net Present Value

 C_0 : original cost

CF: amount of cash flow

C: replacement cost, $C = C_0 - C_S$, where C_S is the salvage value

z: operating life

October 29, 2010 1 of 3

4 Discounted Cash Flow (DCF)

$$NPV = -(C_I + C_W) + \sum_{j=1}^{n} (R_j - X_j)(1 - t) \frac{1}{(1+i)^j} + \sum_{j=1}^{n_t} D_j t \frac{1}{(1+i)^j} + (C_S + C_W) \frac{1}{(1+i)^n}$$
(5)

where:

 C_I : fixed investment (initial unit cost)

 C_W : working capital

n: total useful/project life

 R_j : revenues in period j X_j : expenses in period j

t:tax rate

i: interest rate

 n_t : tax life

 D_j : depreciation in period j

 C_S : salvage value

For straight-line depreciation, $D_j = D$ (constant):

$$D = \frac{C_I - C_S}{n_t}$$

For uniform/constant R_j , X_j and D_j , the sums of the discount factors, $\frac{1}{(1+i)^j}$, simplify to:

$$NPV = -(C_I + C_W) + (R - X)(1 - t) \left[\frac{1 - (1 + i)^{-n}}{i} \right] + Dt \left[\frac{1 - (1 + i)^{-n_t}}{i} \right] + (C_S + C_W) \frac{1}{(1 + i)^n}$$
(6)

October 29, 2010 2 of 3

5 Cost Comparison for Different Project Lives

Three alternatives:

- 1. Assume perpetuity for each project and calculate NPVs
- 2. Convert projects lives to the same basis, using least common multiple (LCM) and calculate NPVs
- 3. Normalize all income and costs (NPVs) to an annualized basis

Alternative 3 yields:

$$\overline{NPV} = NPV \frac{i}{1 - (1+i)^{-z}} \tag{7}$$

where:

 \overline{NPV} : normalized NPV

z: operating life

References

[1] L. T. Biegler, I. E. Grossmann, and A. W. Westerberg. Systematic Methods of Chemical Process Design. Prentice Hall PTR., Upper Saddle River, NJ, USA, 1997.

October 29, 2010 3 of 3