
A Memory-Efficient Implementation of Multi-Period
Two- and Multi-Stage Stochastic Programming Models

Bruno A. Calfa∗
bacalfa@gmail.com

April 14, 2014

Abstract

The objective of this paper is to describe a method of implementing multi-period two-
and multi-stage Stochastic Programming (SP) models with exogenous uncertainty that
is modeling-platform and programming-language independent. The proposed imple-
mentation approach generates an implicit extensive form of the SP model in contrast
to an explicit formulation, which explicitly accounts for the sequence of decisions, thus
introducing redundant variables and constraints in the model. The efficiency of the
proposed implementation approach with respect to memory usage, thus problem size,
is achieved with the introduction of three sets of auxiliary parameters in the math-
ematical formulation of the deterministic equivalent stochastic program. The three
parameters capture the non-anticipativity condition, the mapping between scenarios
and stages, and the structure of the scenario tree in terms of ancestor nodes without
explicitly modeling each node individually. A real-world multi-product, multi-period
network planning optimization model is used to illustrate the effectiveness of the pro-
posed implementation approach.

Keywords: Multi-Period Optimization, Stochastic Programming, Extensive Form Gen-
eration.

1 Introduction
Stochastic programming (SP) with recourse is a powerful framework for modeling mathe-
matical optimization problems that contain uncertain parameters. In this framework, it is
assumed that the random vector has a joint probability distribution. In order to solve prac-
tical problems, the joint probability distribution governing the uncertain data is discretized.
This results in scenario trees, which are the main inputs to SP models. Standard references
on the theory and applications of SP include Prékopa (1995); Birge & Louveaux (2011); King

∗Center for Advanced Process Decision-making (CAPD). Department of Chemical Engineering. Carnegie
Mellon University. Pittsburgh, PA, 15213, USA.

1

mailto:bacalfa@gmail.com

2 Previous Work

& Wallace (2012). In this paper, we focus on SP with exogenous uncertainty, i.e., when the
decisions do not influence the realization of the uncertain parameters.

There are two major classes of SP models: two- and multi-stage. In the former, the
first-stage, or here-and-now, decisions are taken before the uncertainty is revealed, while the
second-stage, or wait-and-see, decisions are taken after the uncertain parameters assume their
values. In multi-stage problems, the uncertainty is revealed in multiple stages, and decisions
are taken at every stage. Moreover, the decisions must satisfy the non-anticipativity condition
(NAC), which means that decisions must be the same over indistinguishable scenarios at a
given stage. In its simplest form, the SP model is solved through its deterministic equivalent
form (also called extensive form), which can be a mixed-integer nonlinear programming
model in the most general case.

The extensive form of the SP model can be generated implicitly or explicitly with respect
to the NAC. In the explicit model, variables for all scenarios and stages are generated, and
the non-anticipativity constraints are explicitly added to the model. In contrast, the implicit
model generates only the variables and constraints for scenarios that are distinguishable at a
given stage. The implicit model leads to considerable reduced size and memory requirements
in large-scale applications. While presolving techniques of MILP codes can successfully
reduce the problem size to its implicit extensive form, generating the explicit model may
exceed memory requirements due to the large number of non-anticipativity conditions. This
difficulty is avoided with the implicit extensive form that is proposed in this paper.

This paper is organized as follows. In Section 2, we review relevant previous work on
implicit extensive form generation of stochastic programs. Section 3 defines the problem
addressed in this paper, and introduces a motivating example to illustrate the generation of
stochastic programs. In Section 4, we lay out some preliminaries and notation with respect to
multi-period optimization models and scenario trees. Section 5 describes and illustrates the
auxiliary parameters used to obtain a reduced-size implicit extensive form of the stochastic
programming model. It also presents the general optimization formulation for the resulting
implicit extensive form, and it contains an analysis to quantify the difference in problem size
for the explicit and the implicit formulations. Section 6 presents a motivating production
planning example. Section 7 presents the results obtained with the proposed approach for a
large-scale industrial example. A summary is presented in Section 8.

2 Previous Work
Birge (1985) recognized that the Deterministic Equivalent Problem (DEP) of Stochastic Pro-
gramming (SP) models is usually very large, and standard solution procedures are costly.
The author described an outer-linearization-based decomposition algorithm called Nested
Benders’ Decomposition (NBD) that uses a dynamic programming representation of the
multi-stage stochastic linear program with fixed recourse. This representation uses the struc-
ture of the scenario tree to only generate variables and constraints corresponding to each
node at a given time period or stage. Consequently, the non-anticipativity condition (NAC)
is implicitly taken into account. The efficiency of the NBD algorithm has been evaluated
in several works (Gassmann, 1990; Dempster & Thompson, 1998; Parpas & Rustem, 2007).
AIMMS (Roelofs & Bisschop, 2013) offers an implementation of the NBD algorithm.

April 14, 2014 2 of 19

3 Problem Definition

To the best of our knowledge, the first work on proposing a modeling approach (i.e., at
the mathematical formulation level) for the generation of the implicit extensive form of SP
models is by Gassmann & Ireland (1995). The authors describe the use of parameters and
index sets to formulate finite event trees in Algebraic Modeling Languages (AMLs). More
specifically, the authors consider a scenario tree as consisting of a base scenario and one or
more additional scenarios. A base scenario has all state variables defined for all time periods,
including the root (present) node. Each additional scenario shares at least the root period
problem state with the base scenario and branches from a parent scenario so that it has a
distinct new problem state at its start time, some time period after the initial period. These
tree events are captured by parameters and index sets that are properly initialized.

Following their previous work, the same authors proposed additional extensions to AMLs
that cover chance-constrained programming as well as recourse problems (Gassmann & Ire-
land, 1996). The latter includes scenario- and distribution-based problems. The authors
show specific examples in AMPL (Fourer, Gay, & Kernighan, 2013).

The approach described in this paper shares some similarities with the one proposed by
Gassmann & Ireland (1995). In our approach, the redundant variables and constraints are
suppressed from the final SP model through the use of auxiliary parameters that capture
the structure of the scenario tree. Before describing the approach, we define the structure
of the multi-period DEP problem in the next section.

3 Problem Definition
The objective of this paper is to describe an approach for implementing stochastic programs
at the level of mathematical formulations. This not only gives the modeler full access to the
generated stochastic model, but also makes it platform-independent.

The premises and outcomes of the proposed implementation approach are as follows:

• Given:

– Deterministic multi-period optimization model;
– Scenario tree information that represents the uncertainty.

• Generate:

– Implicit extensive form of the stochastic program.

A scenario tree is a graphical representation of the different realizations of the uncertain
parameters, and their associated probabilities. A sequence of realizations and their prob-
abilities from the beginning to the end of the time horizon under consideration is called a
scenario. Given the numerical values of the uncertain parameters and the time (stage) at
which they occur, one can create a binary parameter (or an index set) that represents the
non-anticipativity condition, i.e., in which stage the decisions of two scenarios must be the
same. This is all that is needed to generate the explicit extensive form of the SP model. In
order to generate the implicit extensive form, we propose two other sets of parameters to
restrict the generation of variables and constraints only for indistinguishable scenarios at a
given stage.

April 14, 2014 3 of 19

4 Preliminaries and Notation

4 Preliminaries and Notation
This section establishes the nomenclature and notation with regards to deterministic and
stochastic programming (SP) multi-period optimization models, and scenario trees.

4.1 Multi-Period Optimization Models
The focus of this paper is on optimization models that span multiple time periods. When
uncertain parameters are considered, these models can either be formulated as two- or multi-
stage stochastic programs. When modeled as two-stage stochastic programs, multiple periods
are lumped into the same stage. This can be viewed as an approximation of the multi-stage
model in which each stage corresponds to a time period. Figure 1 illustrates the two- and
multi-stage scenario trees, which are used to represent uncertainty in SP models.

A general explicit extensive model is given in (1). The notation is as follows. Let t ∈ T
denote time periods and j ∈ J represent scenarios. The decision variables include zt,j and
w, where both can be vectors of variables, and may have additional indices. The main
distinction between these variables is that z is defined over time periods, and thus may
assume distinct values for different scenarios j at time period t, whereas w is not indexed by
t and assumes the same value for all periods and scenarios. Let ξt,j be uncertain parameters,
and pj the probability of scenario j. Additional indices are not shown in order to keep
the presentation clean, and emphasize the different modeling aspects for terms that are
dependent and independent of t. However, additional indices, such as products, plants,
regions, customers, etc., directly contribute to the total problem size.

min
zt,j , w

β(w) +
∑
j∈J

pj
∑
t∈T

αt,j(zt,j, w; ξt,j) (1a)

s.t. γt,j(zt,j, w; ξt,j) + ψt−τ,j(zt−τ,j, w; ξt−τ,j) ≤ 0 ∀ t ∈ T, j ∈ J (1b)
φ(w) +

∑
t∈T

∑
j′∈J
j′=j

δt,j′(zt,j′ , w; ξt,j′) ≤ 0 ∀ j ∈ J (1c)

zt,j = zt,j′ ∀ t ∈ T, (j, j′) ∈ J, j′ = j + 1,
NACt,j,j′ = 1 (1d)

zt,j ∈ Z ∀ t ∈ T, j ∈ J (1e)
w ∈ W (1f)

where αt,j(·, ·; ·), γt,j(·, ·; ·), ψt−τ,j(·, ·; ·), and δt,j(·, ·; ·) are time-indexed continuous functions,
β(·) and φ(·) are continuous functions that do not depend on the time periods, and Z and
W denote sets of continuous (real) and/or discrete (integer, binary) variables. Therefore, we
separate functional terms in the objective function and constraints that depend on the time
periods from those that are not indexed by t. In constraints (1b), τ is any positive integer
between 1 and |T | − 1.

We note that it is usually the case in multi-period optimization models that τ = 1; thus,
constraints (1b) link decisions made at time period t and its immediate previous time period
t− 1. An example of such constraints are inventory balances that relate the inventory levels

April 14, 2014 4 of 19

4.2 Scenario Trees 4 Preliminaries and Notation

across adjacent time periods. However, the notation and proposed implicit extensive form
are kept general for any previous time period t− τ .

The binary parameter NACt,j,j′ in constraints (1d) enforces the non-anticipativity con-
dition. It takes the value of 1 if decisions at stage t must be the same for scenarios j and
j′, or 0 otherwise. It can be initialized from the data contained in the scenario tree and its
associated sequence of decisions, which are discussed in the next section.

4.2 Scenario Trees
The structure of a stochastic program is dictated by the information contained in the scenario
tree, which is fixed and known a priori when only exogenous uncertainty is considered. A
scenario tree is a discrete representation of the joint probability distribution of the random
vector. It consists of nodes and branches or outcomes. Each node represents the state of the
problem at a particular instant when decisions are made, whereas the branches represent the
different realizations of the random variables. Nodes at the same level belong to the same
time period t.

Figure 1 shows multi-period two- and multi-stage scenario trees and their corresponding
sequences of decisions (Ruszczyński, 1997). Note that both trees in Figures 1(a) and 1(b)
represent stochastic processes for 4 time periods, and have 4 scenarios. A scenario is a path
from the root node to a leaf node.

t = 4

t = 3

t = 2

t = 1

(a) Two-stage scenario tree (left) and its sequence of decisions (right). Nodes are colored according
to the classical definition of stages: stage 1 , stage 2 .

t = 4

t = 3

t = 2

t = 1

(b) Multi-stage scenario tree (left) and its sequence of decisions (right). Nodes are colored according
to the classical definition of stages: stage 1 , stage 2 , and stage 3 .

Figure 1: Multi-period scenario trees and their sequences of decisions. Dotted lines represent
the non-anticipativity condition.

April 14, 2014 5 of 19

5 Proposed Generation Approach

To simplify the notation in the implementation approach described in the next section,
from this point onward a stage corresponds to a time period t. Therefore, the trees in Figure 1
can be interpreted as follows:

• The tree in Figure 1(a) has 4 stages where the decisions in stage 1 must be the same
for every scenario (NAC), but the decisions in stages t = {2, 3, 4} do not have to be
the same among different scenarios.

• The tree in Figure 1(b) has 4 stages where the NAC is as follows: the decisions in stages
1 and 2 must be the same for every scenario, the decisions in stage 3 for scenarios 1
and 2 have to be the same, the decisions in stage 3 for scenarios 3 and 4 have to be
the same, but the decisions in stages t = {3, 4} do not have to be the same among
different scenarios.

5 Proposed Generation Approach
In this section, we introduce the three sets of parameters that act in conjunction to generate
a memory-efficient SP model. Then, we present the implicit extensive form of the general
stochastic model defined in (1). We note that the proposed approach operates at the level
of the mathematical formulation of the optimization model, i.e., it precedes the stage of
translating the algebraic model into a file structure that a specific optimization solver can
process.

5.1 Auxiliary Parameters
The first parameter, NACt,j,j′ , is introduced for defining the explicit extensive form in equa-
tion (1), and is responsible for enforcing the non-anticipativity condition (NAC). The tree in
Figure 1(b) is used to numerically illustrate its definition and the result is shown in Table 1.
Note that there are other possible ways of initializing the parameter NACt,j,j′ . For instance,
for a given stage t, if scenario j = 1 is indistinguishable from scenario j′ = 2, which in turn is
indistinguishable from scenario j′′ = 3, then we do not have to explicitly state that scenarios
j = 1 and j′′ = 3 are indistinguishable by setting NACt,1,3 = 1. However, the initialization
scheme used in the proposed approach is beneficial when considering the two other sets of
parameters in conjunction to obtain the desired generated stochastic model.

j
j′

1 2 3 4
1 1 1 1 1
2 · 1 1 1
3 · · 1 1
4 · · · 1
(a) NAC1,j,j′

j
j′

1 2 3 4
1 1 1 1 1
2 · 1 1 1
3 · · 1 1
4 · · · 1
(b) NAC2,j,j′

j
j′

1 2 3 4
1 1 1 · ·
2 · 1 · ·
3 · · 1 1
4 · · · 1
(c) NAC3,j,j′

j
j′

1 2 3 4
1 1 · · ·
2 · 1 · ·
3 · · 1 ·
4 · · · 1
(d) NAC4,j,j′

Table 1: Initialization of NACt,j,j′ that models the non-anticipativity condition implied by
the scenario tree in Figure 1(b). The dots represent zeros.

April 14, 2014 6 of 19

5.1 Auxiliary Parameters 5 Proposed Generation Approach

The second parameter, Sc2Stt,j, is a binary parameter that accounts for the mapping
of scenarios to stages, i.e., it takes the value of 1 if scenario j is “unique” in stage t, or 0
otherwise. This parameter ensures that only variables and constraints for distinguishable
scenarios at a given stage are generated, thus avoiding creating variables and constraints for
all scenarios at every stage, and then equating variables according to the NAC. The efficient
reduction in problem size is due to this parameter. Again, the tree in Figure 1(b) is used to
illustrate the initialization of this parameter and the result is shown in Table 2. Note that,
for instance, for t = {1, 2} only variables and constraints for scenario 1 may be generated.

t
j

1 2 3 4
1 1 · · ·
2 1 · · ·
3 1 · 1 ·
4 1 1 1 1

Table 2: Entries of Sc2Stt,j that correspond to the scenario tree in Figure 1(b). The dots
represent zeros.

Finally, the third parameter, PaSct,j, is an element parameter whose range is the set of
scenarios, and contains information about the parent of a given scenario in a stage. That
is, given a scenario j and stage t, it returns the parent scenario that is unique as per the
information contained in parameter Sc2Stt,j. Identifying the parent scenario that is unique
is needed in cases where variables indexed by t − τ appear in constraints defined for each
t, where τ is a positive integer. For instance, the nodes of scenarios j = 1 and j′ = 2 and
at stage t = 4 share the same parent node at stage t′ = 3. Thus, only one scenario can be
used to represent this parent node. By convention, we assign the smallest scenario index of
the children nodes (j = 1) to the parent node. Therefore, PaSc4,1 = PaSc4,2 = 1. Similarly,
nodes of scenarios j = 3 and j′ = 4 at stage t = 4 share the same parent at stage t′ = 3, and
we set PaSc4,3 = PaSc4,4 = 3. Table 3 shows the initialized entries of this third parameter
based on the tree in Figure 1(b).

t
j

1 2 3 4
1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 1 1 3 3

Table 3: Entries of PaSct,j that correspond to the scenario tree in Figure 1(b). The parent
scenario of nodes in t = 1 is scenario 1 by convention.

Note that the three sets of parameters defined in this section are used together in the
generation of the extensive form of the SP model, and their initialization follows a hierarchy:
NACt,j,j′ is initialized first, then it is used to initialize Sc2Stt,j, which in turn has the necessary
information to initialize PaSct,j.

April 14, 2014 7 of 19

5.2 Memory-Efficient Implicit Extensive Form 5 Proposed Generation Approach

5.2 Memory-Efficient Implicit Extensive Form
After properly initializing the three sets of parameters described in the previous section, the
proposed memory-efficient extensive form can be written as in equation (2). The expressions
involving the three sets of parameters are colored in red.

min
zt,j , w

β(w) +
∑
j∈J

pj
∑
t∈T

∑
j′∈J

NACt,j′,j=1
Sc2Stt,j′ =1

αt,j′(zt,j′ , w; ξt,j′) (2a)

s.t.

γt,j(zt,j, w; ξt,j) + ψt−τ,j′(zt−τ,j′ , w; ξt−τ,j′) ≤ 0 ∀ t ∈ T, j ∈ J, Sc2Stt,j = 1, j′ = PaSct−τ+1,j

(2b)
φ(w) +

∑
t∈T

∑
j′∈J

NACt,j′,j=1
Sc2Stt,j′ =1

δt,j′(zt,j′ , w; ξt,j′) ≤ 0 ∀ j ∈ J (2c)

zt,j ∈ Z ∀ t ∈ T, j ∈ J, Sc2Stt,j = 1 (2d)
w ∈ W (2e)

Note that the implicit memory-efficient model has essentially the same structure as of the
explicit extensive form in equation (1). The explicit model has the potential to become very
large for real-world applications since it includes (redundant) variables and constraints for
all scenarios in every stage. The main purpose of the implicit formulation is to exploit the
structure of the scenario tree to only generate variables and constraints for distinguishable
scenarios at a given stage. The explicit extensive form is the benchmark used to evaluate the
performance of proposed implementation approach to generate an implicit extensive form.

The resulting implicit extensive form model has a reduced size due to the three sets of
auxiliary parameters described previously, and the absence of the explicit non-anticipativity
constraints. This highlights the main advantage of the proposed approach since it acts at
the level of the mathematical formulation, which can be implemented in any optimization
modeling platform. The procedures in pseudo-code for initializing the three sets of param-
eters that are used in the proposed approach are presented in Appendix A. In the next
subsection, we present an analysis of the reduction in model size that is achieved with the
proposed implementation approach.

5.3 Model Size Reduction Analysis
Intuitively, the implicit extensive form of the stochastic program yields models with fewer
variables and constraints than the explicit formulation due to the binary auxiliary parameters
that restrict the generation of redundant variables and constraints. In this section, we show
expressions that relate the number of variables and constraints in both formulations.

April 14, 2014 8 of 19

5.3 Model Size Reduction Analysis 5 Proposed Generation Approach

We begin the analysis with respect to the number of variables. Both implicit and explicit
models share the same number of variables that are not indexed by time, if any. The
difference is then due to the number of time-indexed variables. In the implicit model, only
variables that represent indistinguishable scenarios at a given stage are generated, which is
achieved by using the binary auxiliary parameter Sc2Stt,j in time-indexed constraints, such
as constraints (2b).

The time-indexed constraints in the explicit model (see constraints (1b)) contain k·|T |·|J |
time-indexed variables, where |T | (|J |) denotes the cardinality of set T (J), and k is a
constant that represents the summation of the cardinality of sets other than T and J , if any, of
all time-indexed variables. For instance, suppose the stochastic optimization model has two
sets of variables, xm,t,j and yn,t,j. Therefore, k = |M |+ |N |, which yields (|M |+ |N |) · |T | · |J |
time-indexed variables. In the implicit model, only time-indexed variables whose t-th and
j-th entries for which Sc2Stt,j = 1 are generated. In other words, only the elements of the
set T × J for which Sc2Stt,j = 1 are used to generate variables. Therefore, the number
of time-indexed variables in the implicit model is k · |Sc2Stt,j|, where |Sc2Stt,j| denotes the
summation of all nonzero entries of the parameter Sc2Stt,j. Note that the constant k is the
same for both models, and it vanishes when taking the ratio of the number of variables in
both models. The ratio between the number of variables in both models can be written as
follows:

(# time-indexed variables Explicit)
(# time-indexed variables Implicit) = |T | · |J |

|Sc2Stt,j|
(3)

Since |T | · |J | > |Sc2Stt,j|, the explicit model has more variables than the implicit model.
Similarly for the number of variables, both explicit and implicit models share the same

number of constraints that are not indexed by time. Therefore, the analysis for the difference
in number of constraints can be restricted to time-indexed constraints. A clear distinction
between the two models is the absence of the non-anticipativity constraints in the implicit
model. The binary auxiliary parameter NACt,j,j′ captures the non-anticipativity condition,
which depends on the structure of the scenario tree. Let us define the total number of pairs
of indistinguishable scenarios for all stages as follows:

ScenPairs =
∑
t∈T

∑
j∈J

∑
j′∈J, j′=j+1
NACt,j,j′ =1

(1) (4)

In other words, ScenPairs represents the number of constraints in the explicit definition of
the non-anticipativity condition (see constraints (1d)).

Similar to the number of variables, the total number of time-indexed constraints in the
explicit model (see constraints (1b)) is given by k1 · |T | · |J |, where k1 is a constant that
represents the summation of the cardinality of sets other than T and J , if any, of all time-
indexed constraints. For the implicit model, the number of time-indexed constraints is given
by k1 · |Sc2Stt,j|. The relationship between the number of constraints in both models can be
written as follows:

(# constraints Explicit)−(# constraints Implicit) =
k1 · (|T | · |J | − |Sc2Stt,j|) + k2 · ScenPairs (5)

April 14, 2014 9 of 19

6 Motivating Production Planning Example

where k2 is a constant that represents the summation of the cardinality of sets other than
T and J , if any, of all non-anticipativity constraints. Note that the left-hand side accounts
for the total number of constraints in each model. Since the number of constraints that are
not indexed by time is the same in both models, it cancels out in the subtraction. Again,
|T | · |J | > |Sc2Stt,j|, which implies that there is also a reduction in the number of constraints.
In practice, the last term on the right-hand side may account for half or more of the total
number of constraints in the explicit model.

In the next section, we present a motivating production planing example to illustrate the
proposed approach to generate the implicit extensive form.

6 Motivating Production Planning Example
The explicit extensive form of the stochastic programming model is given in equation (6).
For illustration purposes, we only consider the demand to be uncertain, thus it is the only
parameter that is indexed by j (scenarios).

min vy +
∑
j∈J

pj
∑
t∈T

(ctxt,j + htst,j) (6a)

s.t.

st,j = st−1,j + xt,j − dt,j ∀ t ∈ T, j ∈ J (6b)
y ≥ yL −

∑
t∈T

xt,j ∀ j ∈ J (6c)

xt,j, st,j, y ≥ 0 ∀ t ∈ T, j ∈ J (6d)
xt,j = xt,j′ ∀ t ∈ T, (j, j′) ∈ J, j′ = j + 1, NACt,j,j′ = 1 (6e)
st,j = st,j′ ∀ t ∈ T, (j, j′) ∈ J, j′ = j + 1, NACt,j,j′ = 1 (6f)

where the objective function (6a) determines the total expected cost to be minimized (ct,
ht, and v are unit production, storage, and contract violation penalty costs, respectively,
xt, st, and y are production, storage, and contract amounts, respectively), constraints (6b)
represent the inventory balance (dt,j represents product demand), constraints (6c) set a lower
bound on the contract amounts (yL represents minimum contract amount), constraints (6d)
contain the non-negativity property (bounds) of the decision variables, and constraints (6e)
and (6f) are the non-anticipativity constraints. Data for the parameters are available in
Appendix B.

The three-stage scenario tree with node values (demand) and probabilities (values over
arcs), and its corresponding sequence of decisions are given in Figure 2.

April 14, 2014 10 of 19

6 Motivating Production Planning Example

10

14

16

0.5

18

0.5

0.6

16

18

0.5
5

22

0.45

0.4

(a) Scenario tree.

0.5

0.6

0.5

0.6

0.55

0.4

0.45

t = 3

t = 2

t = 1

0.4

(b) Sequence of decisions.

Figure 2: Scenario tree (node values represent demand realizations) and corresponding se-
quence of decisions for the motivating example.

The data values for demand in each stage and scenario, dt,j, correspond to the structure of
the scenario tree and its associated sequence of decisions. Those values are used to initialize
the three sets of auxiliary parameters of the proposed implicit formulation. The auxiliary
parameters are initialized as shown in Tables 4 to 6.

j
j′

1 2 3 4
1 1 1 1 1
2 · 1 1 1
3 · · 1 1
4 · · · 1
(a) NAC1,j,j′

j
j′

1 2 3 4
1 1 1 · ·
2 · 1 · ·
3 · · 1 1
4 · · · 1
(b) NAC2,j,j′

j
j′

1 2 3 4
1 1 · · ·
2 · 1 · ·
3 · · 1 ·
4 · · · 1
(c) NAC3,j,j′

Table 4: Initialization of NACt,j,j′ that models the non-anticipativity condition implied by
scenario tree in Figure 2(a). The dots represent zeros.

t
j

1 2 3 4
1 1 · · ·
2 1 · 1 ·
3 1 1 1 1

Table 5: Entries of Sc2Stt,j that correspond to the scenario tree in Figure 2(a). The dots
represent zeros.

April 14, 2014 11 of 19

6 Motivating Production Planning Example

t
j

1 2 3 4
1 1 1 1 1
2 1 1 1 1
3 1 1 3 3

Table 6: Entries of PaSct,j that correspond to the scenario tree in Figure 2(a). The parent
scenario of nodes in t = 1 is scenario 1 by convention.

The memory-efficient, implicit extensive form of the stochastic programming model is
given in equation (7). The expressions involving the three sets of parameters are colored in
red.

min vy +
∑
j∈J

pj
∑
t∈T

∑
j′∈J

NACt,j′,j=1
Sc2Stt,j′ =1

(ctxt,j′ + htst,j′) (7a)

s.t.

st,j = st−1,j′ + xt,j − dt,j ∀ t ∈ T, j ∈ J, Sc2Stt,j = 1, j′ = PaSct,j (7b)
y ≥ yL −

∑
t∈T

∑
j′∈J

NACt,j′,j=1
Sc2Stt,j′ =1

xt,j′ ∀ j ∈ J (7c)

xt,j, st,j, y ≥ 0 ∀ t ∈ T, j ∈ J, Sc2Stt,j = 1 (7d)

All models were implemented in AIMMS 3.13, and solved with GUROBI 5.1 on a desktop
computer with the following specifications: Dell Optiplex 990 with 4 Intel R© CoreTM i7-2600
CPUs at 3.40 GHz (total 8 threads), 8 GB of RAM, and running Windows 7 Enterprise.

The implicit formulation has fewer variables and constraints than the explicit model as
shown in Table 7. The numbers obtained with the approach proposed in this paper are under
the column “Implicit”, whereas column “Explicit” corresponds to the results obtained with
the extensive form model by explicitly adding the non-anticipativity constraints. In partic-
ular, the non-anticipativity constraints account for half of the total number of constraints in
the explicit extensive model. The effect in memory usage was not significant in this small
example. All problems were solved in less than one second. It is interesting to note that,
in this example, GUROBI’s presolve reduced the “Explicit” model to the same size as the
“Implicit” model.

Table 7: Motivating example and model sizes.

Deterministic Stochastic
Implicit (This Work) Explicit

Constraints 4 11 26
Variables 7 15 25

April 14, 2014 12 of 19

7 Industrial Test Case

We now use the relationships developed in Subsection 5.3 to confirm the results above.
There is one variable, y, that is not indexed by time in both models. The number of nonzero
entries in Sc2Stt,j is 7 (see Table 5). Also, |T |·|J | = 3·4 = 12. Thus, the ratio of time-indexed
variables in both models can be calculated using equation (3) as follows:

(# time-indexed variables Explicit)
(# time-indexed variables Implicit) = |T | · |J |

|Sc2Stt,j|
= 12

7

From Table 7, there are 24 and 14 time-indexed variables in the explicit and implicit models,
respectively. Their ratio can be simplified to 12

7 .
The only time-indexed constraints are (6b), and since they contain no other indices than

t (time) and j (scenario), the constant k1 in equation (5) is equal to 1. In addition, because
there are two time-indexed variables, xt,j and st,j, there are two sets of non-anticipativity
constraints (constraints (6d) and (6e)). Since those variables are only indexed by t and j,
the value of k2 is 2, which accounts for the two sets of non-anticipativity constraints. Also,
the number of pairs of indistinguishable scenarios, ScenPairs (see equation (4)) is 5. Thus,
the difference in total number of constraints of both models can be calculated using equation
(5) as follows:

(# constraints Explicit)−(# constraints Implicit)
= k1 · (|T | · |J | − |Sc2Stt,j|) + k2 · ScenPairs
= (1) · (12− 7) + (2) · (5) = 15

From Table 7, there are 26 and 11 constraints in the explicit and implicit models, respectively.
Their difference is 15.

In the next section, we show the numerical results of a large-scale industrial test case to
illustrate the memory-efficiency advantage of the proposed implementation approach.

7 Industrial Test Case
The industrial test case concerns the optimal production planning of a network of production
sites. Each site contains several plants that are highly integrated. The plants can also transfer
products between sites. At these multiple production sites, with more than 25 production
facilities, several products are manufactured. The time horizon of one year is divided into
monthly time periods. The objective of the optimization model is to maximize profit.

The deterministic model contains only linear constraints and continuous variables. For
the stochastic model, we consider the demand of a given product to be the uncertain pa-
rameter. By lumping some of the time periods into the same stage, the scenario tree for the
stochastic model has 15 scenarios.

Table 8 shows the statistics of the optimization problems. The “Total Time” accounts
for the loading time of the model into memory by the solver and its solving time. It is clear
that it is advantageous to invest in a more careful implicit extensive form implementation for
large-scale problems, which sometimes can be solved in a few seconds or minutes without the
need to employ decomposition strategies. The explicit deterministic equivalent model of the
multi-stage stochastic program could not be completely loaded by GUROBI as it exceeded

April 14, 2014 13 of 19

References

the memory resources, and therefore the presolve could not be applied to reduce the model
size. This problem is avoided with the implicit formulation. We note that the majority of
the constraints in the explicit extensive form is due to the NAC.

Table 8: Industrial test case and model sizes.

Deterministic Stochastic
Implicit (This Work) Explicit

Constraints 207,720 1,143,484 19,730,911
Variables 304,397 1,674,161 4,591,445

Solving Time [s] 1.00 12.85 *
Total Time [s] 6.96 41.76 *

Memory Usage [GB] 0.35 2.11 > 8.00
* Not enough memory to extract the model to the solver.

8 Conclusions
In this paper, we described a memory-efficient approach for the formulation and implemen-
tation of stochastic programming models. The main advantage of the proposed approach
is that it allows the generation of deterministic equivalent or extensive form of stochastic
programming models of reduced size by performing minor modifications at the level of the
mathematical formulation. Therefore, it is modeling-platform and programming-language
independent.

The key aspects of the approach are three sets of auxiliary parameters that ensure that
only variables and constraints that represent distinguishable scenarios at a given stage are
generated. In addition, the modeler/user only needs to provide initialized uncertain param-
eters, since the structure of the tree is captured via the proper initialization of the three
sets of auxiliary parameters. Lastly, the approach accounts for the case of variables and
constraints that are not indexed by time periods and variables that refer to previous time
periods in some constraints.

Acknowledgments
The author gratefully acknowledges financial support from The Dow Chemical Company,
as well as Dr. John Wassick and Dr. Anshul Agarwal for the discussions concerning the
real-world planning model and the industrial test case data.

References
Birge, J. R., and Louveaux, F. 2011. Introduction to Stochastic Programming. Springer,
second edition.

Birge, J. R. 1985. Decomposition and Partitioning Methods for Multistage Stochastic Linear
Programs. Operations Research. 33(5):989–1007.

April 14, 2014 14 of 19

APPENDIX A INITIALIZATION OF AUXILIARY PARAMETERS References

Dempster, M. A. H., and Thompson, R. T. 1998. Parallelization and Aggregation of Nested
Benders Decomposition. Annals of Operations Research. 81(0):163–188.

Fourer, R.; Gay, D. M.; and Kernighan, B. W. 2013. AMPL: A Modeling Language for
Mathematical Programming. http://www.ampl.com/.

Gassmann, H. I., and Ireland, A. M. 1995. Scenario Formulation in an Algebraic Modelling
Language. Annals of Operations Research. 59(1):45–75.

Gassmann, H. I., and Ireland, A. M. 1996. On the Formulation of Stochastic Linear Programs
using Algebraic Modelling Languages. Annals of Operations Research. 64(1):83–112.

Gassmann, H. I. 1990. MSLIP: A Computer Code for the Multistage Stochastic Linear
Programming Problem. Mathematical Programming. 47(1-3):407–423.

King, A. J., and Wallace, S. W. 2012. Modeling with Stochastic Programming. Springer Series
in Operations Research and Financial Engineering. Springer Science+Business Media New
York.

Parpas, P., and Rustem, B. 2007. Computational Assessment of Nested Benders and Aug-
mented Lagrangian Decomposition for Mean-Variance Multistage Stochastic Problems.
INFORMS Journal on Computing. 19(2):239–247.

Prékopa, A. 1995. Stochastic Programming. Mathematics and Its Applications. Kluwer
Academic Publishers.

Roelofs, M., and Bisschop, J. 2013. Advanced Interactive Multidimensional Modeling System
(AIMMS). http://www.aimms.com/.

Ruszczyński, A. 1997. Decomposition Methods in Stochastic Programming. Mathematical
Programming 79(1-3):333–353.

Appendix A Initialization of Auxiliary Parameters
There may be multiple uncertain parameters under consideration. Every element of the
random vector does not have to assume different values for each outcome at each stage. We
denote the set of all uncertain parameters under consideration by Ξt,j, for t ∈ T and j ∈ J .
The procedures described in this appendix initialize the three sets of auxiliary parameters
that are used to generate the implicit extensive form of stochastic programs. The workflow
is as follows: the modeler initializes each uncertain parameter, ξt,j ∈ Ξt,j, and then calls the
procedures in the given order as explained below.

First, the binary parameter NACt,j,j′ is initialized in Algorithm A.1. Each uncertain
parameter in the optimization model is used to identify distinguishable scenarios at a given

April 14, 2014 15 of 19

http://www.ampl.com/
http://www.aimms.com/

APPENDIX A INITIALIZATION OF AUXILIARY PARAMETERS References

stage in the entire tree.
Input : Uncertain parameter(s), ξt,j ∈ Ξt,j

Output: Initialized NACt,j,j′

0.Empty output parameter by setting NACt,j,j′ := 0
1.Begin initialization: for each t the pair of scenarios (j, j′) is distinguishable if j < j′

NACt,j,j′ := 1 where j ≤ j′

2.Use uncertain parameters to detect distinguishable scenarios
for [t ∈ T, (j, j′) ∈ J] such that (t > 1) and (j < j′) do

for [ξt,j ∈ Ξt,j] do
AreScenariosDifferent := false
for t′ ∈ T such that t′ ≤ t do

if [ξt′,j 6= ξt′,j′] or [ξt′,j = ξt′,j′ and NACt,j,j′ = 0] then
// Scenarios j and j′ are distinguishable
NACt,j,j′ := 0
AreScenariosDifferent := true
break

end
end
if not AreScenariosDifferent then

NACt,j,j′ := 1
end

end
end

Algorithm A.1: Procedure CreateNAC: Pseudo-code for initializing the binary param-
eter NACt,j,j′ .
Then, the binary parameter Sc2Stt,j is initialized as shown in Algorithm A.2. The nota-

tion T[n] denotes the n-th element of ordered set T .

April 14, 2014 16 of 19

APPENDIX A INITIALIZATION OF AUXILIARY PARAMETERS References

Input : Initialized NACt,j,j′

Output: Initialized Sc2Stt,j
0.Empty output parameter by setting Sc2Stt,j := 0
1.Only the first scenario is unique in the first stage

Sc2StT[1],J[1] := 1
2.Use previously initialized NACt,j,j′ to map unique scenarios to stages

for t ∈ T such that t ≥ T[2] do
CurrScenario := J[1] // Get first scenario
repeat “RepeatLoop”

while CurrScenario < J[|J |] do
for j′ ∈ J such that j′ > CurrScenario do

// Only include the distinguishable scenarios in each stage
if not NACt,CurrScenario,j′ then

CurrScenario := j′

Sc2Stt,j′ := 1
break

end
break “RepeatLoop” when (j′ = J[|J |])

end
end
break “RepeatLoop” when (CurrScenario = J[|J |])

until
end

Algorithm A.2: Procedure CreateScenariosToStages: Pseudo-code for initializing
the binary parameter Sc2Stt,j.
Finally, Algorithm A.3 shows the initialization of the element parameter PaSct,j.

April 14, 2014 17 of 19

APPENDIX A INITIALIZATION OF AUXILIARY PARAMETERS References

Input : Initialized Sc2Stt,j
Output: Initialized PaSct,j

0.Empty output parameter by setting PaSct,j := 0
1.Parent scenario of first-stage scenario is the first scenario by convention

PaSct,j := J[1] where t = T[1]
PaSct,j := j where t > T[1] // Will be overridden if applicable

2.Parent scenario of second-stage scenario is the first scenario
PaSct,j := J[1] where t = T[2]

3.Set parent scenarios for remaining stages
for t ∈ T such that t ≥ T[3] do

CurrStageScenario := J[1]
PrevStageScenario := CurrStageScenario
PaSct,CurrStageScenario := PrevStageScenario
repeat “RepeatLoop”

while PrevStageScenario < J[|J |] do
for j′ ∈ J such that j′ > PrevStageScenario do

// Only include the distinguishable scenarios in each stage
if not Sc2Stt−1,j′ then

CurrStageScenario := j′

PaSct,CurrStageScenario := PrevStageScenario
else

PrevStageScenario := j′

break
end
break “RepeatLoop” when (CurrStageScenario = J[|J |])

end
end
break “RepeatLoop” when (PrevStageScenario = J[|J |])

until
end

Algorithm A.3: Procedure CreateParentScenario: Pseudo-code for initializing the
binary parameter PaSct,j.
The complete script for the memory-efficient implementation approach is summarized

in Algorithm A.4, where the procedure SolveStochasticModel creates the mathematical
program and calls the solver.

// Initialize auxiliary parameters
CreateNAC
CreateScenariosToStages
CreateParentScenario

// Generate and solve stochastic programming model
SolveStochasticModel
Algorithm A.4: Main script for generating the memory-efficient extensive form.

April 14, 2014 18 of 19

APPENDIX B DATA FOR MOTIVATING EXAMPLE References

Appendix B Data for Motivating Example
The parameters for the production planning LP model are given in the following tables.

Table B.1: Unit production cost (ct) [$/t].

Time Period Group
1 5
2 4
3 6

Table B.2: Unit storage cost (ht) [$/t].

Time Period Group
1 1
2 1.5
3 1

Table B.3: Product demand (dt,j) [t].

Time Period Scenario
1 2 3 4

1 10 10 10 10
2 14 14 16 16
3 16 18 18 22

The contract violation penalty cost is v = 2 $/t, and the minimum contract amount is
yL = 50 t.

April 14, 2014 19 of 19

	Abstract
	1 Introduction
	2 Previous Work
	3 Problem Definition
	4 Preliminaries and Notation
	4.1 Multi-Period Optimization Models
	4.2 Scenario Trees

	5 Proposed Generation Approach
	5.1 Auxiliary Parameters
	5.2 Memory-Efficient Implicit Extensive Form
	5.3 Model Size Reduction Analysis

	6 Motivating Production Planning Example
	7 Industrial Test Case
	8 Conclusions
	References
	Appendix A Initialization of Auxiliary Parameters
	Appendix B Data for Motivating Example

